1) Ta có: \(x^4+y^4\ge2x^2y^2\)
\(x^4+y^4\ge\dfrac{1}{2}\left(x^2+y^2\right)^2\)
Tương tự: \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\)
\(\Rightarrow a^4+b^4\ge\dfrac{1}{8}\left(a+b\right)^4\)
b) Câu hỏi tương tự
c) Đề sai
1) Ta có: \(x^4+y^4\ge2x^2y^2\)
\(x^4+y^4\ge\dfrac{1}{2}\left(x^2+y^2\right)^2\)
Tương tự: \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\)
\(\Rightarrow a^4+b^4\ge\dfrac{1}{8}\left(a+b\right)^4\)
b) Câu hỏi tương tự
c) Đề sai
1CMR: x2+y2+8\(\ge\) xy+2x+2y
2 Cho a+b+c=6 . Cmr: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{3}{4}\)
3 Cho x+y+z+xy+yz+zx=6. Cmr: x2+y2+z2 \(\ge3\)
Bài 1: Cho x+y+z+xy+xz+yz=6
Chứng minh x2+y2+z2≥3
Bài 2: Chứng minh 2(a4+b4) ≥ ab3+a3b+2a2b2 với mọi a,b
a. CMR :\(x^2+y^2+1\ge-1\)
b. Cho \(a+b+c=1\). CMR:
\(a^4+b^4+c^4\ge\dfrac{1}{27}\)
Các bạn giúp mk với. Một câu thôi cũng được.
Chứng minh các bất đẳng thức:
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\ge2xy\)
b) \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với \(x>0,y>0\)
Cho x,y,z là các số dương. CMR:
a) (x+y+z)(\(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\)) ≥\(\dfrac{9}{2}\)
b) (x+y+z+t)(\(\dfrac{1}{x+y+z}+\dfrac{1}{y+z+t}+\dfrac{1}{z+t+x}+\dfrac{1}{t+x+y}\)) ≥\(\dfrac{16}{3}\)
c) \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) ≥\(\dfrac{1}{2}\left(a+b+c\right)\)
\(\dfrac{ax+by}{2}\) ≥ \(\dfrac{a+b}{2}\) . \(\dfrac{x+y}{2}\) với a≥b ; x≥y
CMR: \(x^2+y^2+1\ge xy+x+y\)
a) Chứng minh: \(2016^{2015}+2018^{2016}⋮2017\)
b) Cho x, y \(\ge\)1
Chứng minh: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Cho x+y=2. CMR: x4+y4\(\ge\) 2