Tính:
a, \(\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{2n+1}{n^2\left(n+1\right)^1}\) tại n= 2014
b, \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{12}{13!}\)
a) Tìm x(x thuộc N*), biết \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{x\left(x+2\right)}\right)=\dfrac{31}{16}\)
b) Chứng tỏ \(\dfrac{2}{2^2}+\dfrac{2}{4^2}+\dfrac{2}{6^2}+...+\dfrac{2}{2016^2}< \dfrac{2016}{2017}\)
c) Chứng tỏ \(\dfrac{1}{5^2}+\dfrac{1}{9^2}+\dfrac{1}{13^2}+...+\dfrac{1}{41^2}< \dfrac{10}{129}\)
CMR
\(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+....\dfrac{2n-1}{4+\left(2n-1\right)^4}=\dfrac{n^2}{4n^2+1}\)
với mọi n nguyên dương
tìm nghiệm của phân thức viết dưới dạng phân số
a.\(\dfrac{4}{\left(2+\dfrac{2}{1+\dfrac{4}{5}}\right)x-\left(1-\dfrac{4}{2+\dfrac{1}{1+\dfrac{7}{8}}}\right)}+\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{4}}}\)
= \(4+\dfrac{2}{1+\dfrac{8}{9}}\)
b.
\(\dfrac{1}{2+\dfrac{3}{4+\dfrac{5}{6+\dfrac{7}{8}}}}=\dfrac{1}{3+\dfrac{2}{5+\dfrac{3}{7+\dfrac{4}{9}}}}+x.\left(4+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{2}}}\right)\)
(giải bằng máy tính casio )
Tính tổng: \(B=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
Làm theo hướng dẫn: \(\dfrac{1}{k\left(k+1\right)\left(k+2\right)}=\dfrac{1}{2}\left(\dfrac{1}{k}+\dfrac{1}{k+2}\right)-\dfrac{1}{k+1}\)
Tính tổng:
\(B=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
Làm theo hướng dẫn: \(\dfrac{1}{k\left(k+1\right)\left(k+2\right)}=\dfrac{1}{2}\left(\dfrac{1}{k}+\dfrac{1}{k+2}\right)-\dfrac{1}{k+1}\)
Cho x, y, z thỏa mãn : \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\). Cmr :
\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{zx\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\ge\dfrac{3}{2}\).
\(\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2\ge\dfrac{25}{2}\) . Với a, b là ai số dương thỏa mãn: \(a+b=1\)
Cho bài toán sau: \(\left(1-\dfrac{2}{5}\right).\left(1-\dfrac{2}{7}\right).\left(1-\dfrac{2}{9}\right).\left(1-\dfrac{2}{11}\right).....\left(1-\dfrac{2}{113}\right)=\dfrac{a}{b}\)khi đó a+b = ?