CMR:
A=\(\dfrac{1}{3\left(1+\sqrt{2}\right)}+\dfrac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\dfrac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)<\(\dfrac{1}{2}\)
\(A=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{16}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(B=\dfrac{2\left(\dfrac{\sqrt{2}+\sqrt{3}}{6\sqrt{2}}\right)^{^{^{-1}}}+3\left(\dfrac{\sqrt{2}+\sqrt{3}}{4\sqrt{3}}\right)^{^{^{-1}}}}{\left(\dfrac{2+\sqrt{6}}{12}\right)^{^{^{-1}}}+\left(\dfrac{3+\sqrt{6}}{12}\right)^{^{^{-1}}}}\)
Cíu em với các pro ~
P/s: Câu B em làm đc r mà k biết kết quả đúng k nữa nên up lên hỏi luôn :)))
C/m với mọi số tự nhiên n khác 0, ta luôn có:
\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)
Chứng minh với \(\forall\)n \(\in\)N có
\(\dfrac{1}{2\sqrt{2}+1}+\dfrac{1}{3\sqrt{3}+2\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\dfrac{1}{\sqrt{n+1}}\)
Cho các số thực dương x, y, z thỏa mãn : xyz=1.CMR:
\(\dfrac{1}{\left(\sqrt{xy}+\sqrt{x}+1\right)^2}+\dfrac{1}{\left(\sqrt{yz}+\sqrt{y}+1\right)^2}+\dfrac{1}{\left(\sqrt{xz}+\sqrt{z}+1\right)^2}\ge\dfrac{1}{3}\)
Giúp mk với , mk sắp thi r...
Cho 4 số a,b,c,d bất kỳ chứng minh rằng : \(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}=< \sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
bài 2
Chứng minh rằng: \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\) Với n là số nguyên
Chứng minh đẳng thức sau \(\sqrt{n+1}-\sqrt{n}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}\) với n là một số tự nhiên tùy ý. Từ đó tính giá trị của biểu thức
\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}.\)
CMR : \(\sqrt{n}\)< \(\dfrac{1}{\sqrt{1}}\)+\(\dfrac{1}{\sqrt{2}}\)+\(\dfrac{1}{\sqrt{3}}\)+...+\(\dfrac{1}{\sqrt{n}}\) với n ≥2; n ϵ Z+
Cho 3 số x y z thỏa mãn x+y+z=xyz.Cm:\(\dfrac{\sqrt{\left(1+y^2\right)\left(1+z^2\right)}-\sqrt{1+y^2}-\sqrt{1+z^2}}{yz}+\dfrac{\sqrt{\left(1+z^2\right)\left(1+x^2\right)}-\sqrt{1+z^2}-\sqrt{1+x^2}}{zx}+\dfrac{\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\sqrt{1+x^2}-\sqrt{1+z^2}}{yz}=0\)