CMR: với n là số tự nhiên
\(\dfrac{43}{44}< \dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+......+\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}< \dfrac{44}{45}\)
\(A=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{16}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(B=\dfrac{2\left(\dfrac{\sqrt{2}+\sqrt{3}}{6\sqrt{2}}\right)^{^{^{-1}}}+3\left(\dfrac{\sqrt{2}+\sqrt{3}}{4\sqrt{3}}\right)^{^{^{-1}}}}{\left(\dfrac{2+\sqrt{6}}{12}\right)^{^{^{-1}}}+\left(\dfrac{3+\sqrt{6}}{12}\right)^{^{^{-1}}}}\)
Cíu em với các pro ~
P/s: Câu B em làm đc r mà k biết kết quả đúng k nữa nên up lên hỏi luôn :)))
Cho các số thực dương x, y, z thỏa mãn : xyz=1.CMR:
\(\dfrac{1}{\left(\sqrt{xy}+\sqrt{x}+1\right)^2}+\dfrac{1}{\left(\sqrt{yz}+\sqrt{y}+1\right)^2}+\dfrac{1}{\left(\sqrt{xz}+\sqrt{z}+1\right)^2}\ge\dfrac{1}{3}\)
Giúp mk với , mk sắp thi r...
Cho 4 số a,b,c,d bất kỳ chứng minh rằng : \(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}=< \sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
bài 2
Chứng minh rằng: \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\) Với n là số nguyên
Cho 3 số x y z thỏa mãn x+y+z=xyz.Cm:\(\dfrac{\sqrt{\left(1+y^2\right)\left(1+z^2\right)}-\sqrt{1+y^2}-\sqrt{1+z^2}}{yz}+\dfrac{\sqrt{\left(1+z^2\right)\left(1+x^2\right)}-\sqrt{1+z^2}-\sqrt{1+x^2}}{zx}+\dfrac{\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\sqrt{1+x^2}-\sqrt{1+z^2}}{yz}=0\)
Chứng minh với \(\forall\)n \(\in\)N có
\(\dfrac{1}{2\sqrt{2}+1}+\dfrac{1}{3\sqrt{3}+2\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\dfrac{1}{\sqrt{n+1}}\)
Chứng minh các đẳng thức :
a)\(\dfrac{\left(\sqrt{x}1\right)^2+4\sqrt{x}}{\sqrt{x}+1}-\dfrac{x-\sqrt{x}}{\sqrt{x}}=2\)
b)\(\dfrac{1-x}{1-\sqrt{x}}-\left(1-\dfrac{1}{\sqrt{x}}\right)\cdot\sqrt{x}=2\)
MỌI NGƯỜI GIẢI CÂU NÀY GIÚP MÌNH VỚI!!!!!
CMR:
A=\(\dfrac{1}{3\left(1+\sqrt{2}\right)}+\dfrac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\dfrac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)<\(\dfrac{1}{2}\)
\(P=\left(\dfrac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
a) Rút gọn P (x > o, x khác 1)
b) Tìm giá trị của x để P > 0