\(n^3+12n^2-n+6\)
\(=n\left(n^2-1\right)+12n^2+6\)
\(=n\left(n-1\right)\left(n+1\right)+12n^2+6\)
Ta thấy biểu thức này luôn chia hết cho 6 vì :
n(n-1)(n+1) chia hết cho 6 ( tích 3 số liên tiếp luôn chia hết cho 6)
12n2 và 6 luôn chia hết cho 6 với mọi n
Từ đó ta suy ra được tổng của 3 số chia hết cho 6 luôn chia hết cho 6
\(\Rightarrow\)đpcm