Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh\(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...-\dfrac{1}{2004^2}>\dfrac{1}{2004}\)
Chứng minh \(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004 }}< 0.2\)
Chứng minh rằng tổng :
\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
\(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)<0,2
chứng tỏ rằng \(\frac{1}{2^2}-\frac{1}{2^{\text{4}}}+\frac{1}{2^6}-.....+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+....+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
Chứng minh rằng tổng :
S=\(\dfrac{1}{2^2}\)- \(\dfrac{1}{2^4}\)+\(\dfrac{1}{2^6}\)-...+\(\dfrac{1}{2^{4n-2}}\)-\(\dfrac{1}{2^{4n}}\)+...+\(\dfrac{1}{2^{2002}}\)-\(\dfrac{1}{2^{2004}}\)<0.2
Chứng minh rằng :
S \(=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
Các bạn giúp mình nhé ! : Bạn Vũ Minh Tuấn , Nguyễn Văn Đạt , Hoàng Minh Nguyệt , Băng Băng 2k6 , và thầy Akai Haruma vào giúp mình với !!! . Cảm ơn các bạn nhiều
Chứng minh rằng :
S \(=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
Các bạn giúp mình nhé ! : Bạn Vũ Minh Tuấn , Nguyễn Văn Đạt , Hoàng Minh Nguyệt , Băng Băng 2k6 , và thầy Akai Haruma vào giúp mình với !!! . Cảm ơn các bạn nhiều
chứng minh :
S = \(\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}+....+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}>0,2\)
Tính giá trị biểu thức:
\(D=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}+\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}+\dfrac{2}{2004}}{\dfrac{2}{2002}+\dfrac{3}{2003}+\dfrac{3}{2004}}\)
\(H=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2011}{1}+\dfrac{2010}{2}+...+\dfrac{1}{2011}}\)
\(I=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2012}{2}+\dfrac{2012}{3}+...+\dfrac{2012}{2011}}\)
Help me!