dùng bđt am-gm cho a và 1/a, b và 1/b là ra
dùng bđt am-gm cho a và 1/a, b và 1/b là ra
1. CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\)
2. Cho a, b , c >0 .CMR: \(\frac{bc}{a}+\frac{ac}{b}+\frac{ba}{c}\ge a+b+c\)
Cho a,b>0 .CMR: \(ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\)
cho a,b,c > 0 thỏa mãn a+b+c=3
Cmr: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge a^2+b^2+c^2\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=12\). Cmr: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{8}{a^2+28}+\frac{8}{b^2+28}+\frac{8}{c^2+28}\)
cho a,b >0 , a+b=4ab
CMR:\(\frac{a}{4b^2+1}\)+\(\frac{b}{4a^2+1}\)≥\(\frac{1}{2}\)
Cho a,b,c >0 abc=1. CMR \(\frac{a^4}{b^2\left(c+a\right)}+\frac{b^4}{c^2\left(a+b\right)}+\frac{c^4}{a^2\left(b+c\right)}\ge\frac{a+b+c}{2}\)
cho a,b,c > 0 thỏa mãn ab+bc+ca=1. Cmr:
\(a+b+c+\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}\ge\frac{3\sqrt{3}}{2}\)
cho \(c\ge b\ge a>0\) . Cmr: \(\frac{2a^2}{b+c}+\frac{2b^2}{c+a}+\frac{2c^2}{a+b}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
1, cho a,b,c ≥0 chứng minh các bất đẳng thức sau:
a, (a+b)(b+c)(c+a) ≥ 8abc
b, \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c,vớia+b+c>0\)
c, \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}vớia,b,c>0\)