Có BĐT: \(a^2+b^2+c^2\ge ab+bc+ca\)
\(A=\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{bc+ab}+\frac{c^4}{ac+bc}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(A\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{1^2}{2\left(a^2+b^2+c^2\right)}=\frac{1}{2.1}=\frac{1}{2}\)
\("="\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)