\(\Leftrightarrow x+y>=2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2>=0\)(luôn đúng)
Dấu '='xảy ra khi x=y
\(\Leftrightarrow x+y>=2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2>=0\)(luôn đúng)
Dấu '='xảy ra khi x=y
Cho x ≥ 1; y ≥ 2; z ≥ 3 và \(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
Chứng minh M ≤ \(\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\)
Cho x,y,z là các số lớn hơn hoặc bằng 1. CMR:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{2}{1+xy}\)
HELP ME!!!
Cho x , y , z lớn hơn hoặc bằng 1 . CMR :
\(\dfrac{1}{1+x^2}\) + \(\dfrac{1}{1+y^2}\) \(\ge\) \(\dfrac{2}{1+xy}\)
1: Cho a,b,c là độ dài 3 cạnh của 1 tam giác có tổng bằng 1. CMR: \(a^2+b^2+c^2+4abc< \dfrac{1}{2}\)
2: Cho -1<x,y,z<3 và x+y+z=1. CMR: \(x^2+y^2+z^2\le11\)
3: Cho x,y,z là các số \(\ge\)1 . CMR: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{3}{1+xyz}\)
4: Cho x>y và xy=1. CMR: \(\dfrac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}\ge8\)
5: Cho a,b,c là độ dài 3 cạnh tam giác:
a)\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b)\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
c)\(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
Cho x, y >1 .
Chứng minh:\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Rút gọn:
\(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\cdot\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]\cdot\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{xy^3}+\sqrt{x^3y}}\)
CMR với mọi x,y ta có :
\(x^4+y^4\ge xy^3+x^3y\)
a) cho x>1. CMR: \(\dfrac{\sqrt{x-1}}{x}\le\dfrac{1}{2}\)
b) Cho x,y >1. CMR: \(\dfrac{x^3+y^3-x^2+y^2}{\left(x-1\right)\left(y-1\right)}\ge8\)
1: Cho x,y,z>0. CMR: \(\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\)
2: Cho 0<x<\(\dfrac{1}{2}\). CMR: \(\dfrac{1}{x}+\dfrac{2}{1+2x}\ge8\\\)
3: Cho x,y>0 và x+y=1. CMR:
a)\(\dfrac{1}{xy}+\dfrac{2}{x^2+y^2}\ge8\)
b)\(\dfrac{1}{xy}+\dfrac{1}{x^2+y^2}\ge6\\ \)
4: CM các bđt sau: a) \(x^3+4x+1>3x^2\)
b)\(x^4-x+\dfrac{1}{2}>0\)
5: Cho a,b,c là độ dài 3 cạnh 1 tam giác. CMR:
a)\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)
b)\(\dfrac{1}{a+b},\dfrac{1}{b+c},\dfrac{1}{c+a}\)là 3 cạnh của 1 tam giác(cần CM theo bđt tam giác)
6: Cho a,b,c,d>0 và abcd=1. CMR:
\(a^2+b^2+c^2+d^2+ab+cd\ge6\)