Đặt \(A=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+...+\dfrac{1}{196}\)
\(=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{13^2}\)
Đặt \(B=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{12\cdot13}\)
Ta có:
\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{13^2}\)\(<\)\(B=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{12\cdot13}\left(1\right)\)
Mà \(B=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{12\cdot13}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{12}-\dfrac{1}{13}\)
\(=\dfrac{1}{2}-\dfrac{1}{13}< \dfrac{1}{2}\left(2\right)\). Từ \((1)\) và \((2)\) ta có:
\(A< B< \dfrac{1}{2}\Rightarrow A< \dfrac{1}{2}\) (Điều phải chứng minh)