Ta thấy 32-22=5; 42-32=7;......;20142-20132=(2014-2013)(2014+2013)=4017
=> VT=1/4+1/4-1/9+1/9-1/16+1/16-......-1/20132+1/20132-1/20142
=1/4+1/4-1/2014=1/2-1/20142<1/2<1
Ta thấy 32-22=5; 42-32=7;......;20142-20132=(2014-2013)(2014+2013)=4017
=> VT=1/4+1/4-1/9+1/9-1/16+1/16-......-1/20132+1/20132-1/20142
=1/4+1/4-1/2014=1/2-1/20142<1/2<1
cmr \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{4027}{2013^2.2014^2}< 1\)
với số nguyên dương lớn hơn 1
a)cmr \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)
b)cmr \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< \dfrac{5}{3}\)
với n số nguyên dương lớn hơn 1
a) cmr \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)
b)cmr \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< \dfrac{5}{3}\)
1, Cho các số x,y,z không âm. \(\ne\)0. thỏa mãn: \(\dfrac{1}{x+1}+\dfrac{1}{y+2}+\dfrac{1}{z+3}\le1\)
Tìm GTNN của \(P=x+y+z+\dfrac{1}{x+y+z}\)
2, Cho các số x,y dương thỏa mãn đk: xy+yz+zx =671
CMR: \(\dfrac{x}{x^2-yz+2013}+\dfrac{y}{y^2-zx+2013}+\dfrac{z}{z^2-xy+2013}\ge\dfrac{1}{x+y+z}\)
Tính các tổng sau:
\(T=\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{13}+......+\dfrac{1}{\sqrt{2013}+\sqrt{2017}}}\)
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+.....+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
cho dãy số:
\(a_1=1,a_2=1+\dfrac{1}{3},...,a_n=1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{2n-1}\)
cmr:\(\dfrac{1}{a_1^2}+\dfrac{1}{3a_2^2}+...+\dfrac{1}{\left(2n-1\right)a_n^2}< 2\)
cho dãy số :\(a_1=1,a_2=1+\dfrac{1}{3},.....,a_n=1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{2n-1}\)
cmr:
\(\dfrac{1}{a_1^2}+\dfrac{1}{3a_2^2}+...+\dfrac{1}{\left(2n-1\right)a_n^2}< 2\)
cho a,b,c \(\ge0\) tm abc=1
cmr \(\dfrac{1}{2a^3+3a+2}+\dfrac{1}{2b^3+3b+2}+\dfrac{1}{2c^3+3c+2}\ge\dfrac{3}{7}\)
CMR với mọi số tự nhiên lớn hơn 2 thì :
\(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2^n-1}>\dfrac{n}{2}\)