CMR : E = \(1-\frac{1}{2^2}-\frac{1}{3^2}-...-\frac{1}{2004^2}>\frac{1}{2004}\)
F = \(\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{200^2}< \frac{1}{2}\)
H = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
CMR: \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
Chứng minh rằng: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+......\frac{100}{3^{100}}< \frac{3}{4}\)
Mong mọi người giúp em với ạ!
a) Cho A=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+.....+\frac{100}{3^{100}}\)Chứng minh A<\(\frac{3}{4}\).
b) Chứng minh rằng:A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{99}}< \frac{1}{2}\)
Tính:
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
So sánh
\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
1.Chứng minh rằng: \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^3.4^2}+...+\frac{19}{9^2.10^2}< 1\)
2.Chứng minh rằng: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
Làm nhanh giúp mình nhé mọi người !!!
Tính A= \(1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+....+\frac{100}{2^{100}}\)
Tìm n thuộc Z sao cho \(2n-3⋮n+1\)
CMR: \(\frac{1}{2!}\) + \(\frac{2}{3!}\) + \(\frac{3}{4!}\) +...+ \(\frac{99}{100!}\) < 1