a) Qui nạp :
\(A=10^n+18n-1\)
+) Xét \(n=1\Leftrightarrow A=27⋮27\)
+) Xét \(n=2\Leftrightarrow A=135⋮27\)
Giả sử biểu thức đúng với \(n=k\)
Khi đó ta có : \(A=10^k+18k-1⋮27\)(*)
Để kết thúc bài toán ta cần chứng minh biểu thức đúng với \(n=k+1\)
Xét \(A=10^{k+1}+18\left(k+1\right)-1\)
\(A=10^k\cdot10+18k+18-1\)
\(A=10\left(10^k+18k-1\right)-162k+27\)
\(A=10\left(10^k+18k-1\right)-27\left(6k-1\right)\)
Theo (*) ta có \(10\left(10^k+18k-1\right)⋮27\)
Mặt khác \(-27\left(6k-1\right)⋮27\)
\(\Rightarrow A=10\left(10^k+18k-1\right)-27\left(6k-1\right)⋮27\)
Ta có đpcm
b) \(n^3-n=n\left(n-1\right)\left(n+1\right)\)
Ta có \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số tự nhiên liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)⋮2\\n\left(n-1\right)\left(n+1\right)⋮3\\\left(2;3\right)=1\end{matrix}\right.\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮2\cdot3=6\)( đpcm )