\(a.\dfrac{2\left(x-y\right)}{3y-3x}=\dfrac{-2\left(y-x\right)}{3\left(y-x\right)}=\dfrac{-2}{3}\)
\(b.\dfrac{x-2}{-x}=\dfrac{2-x}{x}=\dfrac{\left(2-x\right)\left(x^2+2x+4\right)}{x\left(x^2+2x+4\right)}=\dfrac{8-x^3}{x\left(x^2+2x+4\right)}\)
\(\dfrac{3x}{x+y}=\dfrac{3x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}=\dfrac{-3x\left(x-y\right)}{\left(x+y\right)\left(y-x\right)}=\dfrac{-3x\left(x-y\right)}{y^2-x^2}\)
c: \(\dfrac{-3x\left(x-y\right)}{y^2-x^2}=\dfrac{3x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}=\dfrac{3x}{x+y}\)
a: \(\dfrac{2\left(x-y\right)}{3y-3x}=\dfrac{2\left(x-y\right)}{-3\left(x-y\right)}=\dfrac{-2}{3}\)
b: \(\dfrac{8-x^3}{x\left(x^2+2x+4\right)}=\dfrac{\left(2-x\right)\left(x^2+2x+4\right)}{x\left(x^2+2x+4\right)}=\dfrac{2-x}{x}\)