\(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)
\(2^2S=2^2\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
\(4S=1-\dfrac{1}{2^2}+...+\dfrac{1}{2^{4n}}+\dfrac{1}{2^{4n+2}}+...+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\)
\(4S+S=\left(1-\dfrac{1}{2^2}+...+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
\(5S=1-\dfrac{1}{2^{2004}}< 1\Rightarrow S< \dfrac{1}{5}=0,2\)