Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cao Hồ Ngọc Hân

Chứng tỏ rằng : \(1-\dfrac{1}{2^{ }2}-\dfrac{1}{3^{ }2}-...-\dfrac{1}{2004^{ }2}>\dfrac{1}{2004}\)

Hoang Hung Quan
27 tháng 4 2017 lúc 20:57

Sửa đề:

CMR: \(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-...-\dfrac{1}{2004^2}>\dfrac{1}{2004}\)

Giải:

Ta có:

\(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...-\dfrac{1}{2004^2}\)

\(=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2014^2}\right)\)

Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2004^2}\)

Dễ thấy:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)

\(.............................\)

\(\dfrac{1}{2004^2}=\dfrac{1}{2004.2004}>\dfrac{1}{2004.2005}\)

Cộng các vế trên với nhau ta được:

\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2004.2005}\)

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2004}-\dfrac{1}{2005}\)

\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2005}=2\)


Các câu hỏi tương tự
Thái Đào
Xem chi tiết
Thái Đào
Xem chi tiết
Minh Tuấn
Xem chi tiết
Trần Minh Hưng
Xem chi tiết
Lê Quang Dũng
Xem chi tiết
Hồ Khánh Ly
Xem chi tiết
Trần Thị Trà My
Xem chi tiết
nguyễn thị thanh ngọc
Xem chi tiết
Fuijsaka Ariko
Xem chi tiết