Chứng minh nếu \(a^3+b^3+c^3=3abc\) và a, b, c > 0. Chứng minh a = b = c
a^2 + b^2 + 1 >= ab + a + b. Cho a+b+c =0 chung minh a^3 + b^3 + c^3 = 3abc
chứng minh rằng
a) \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
b)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\cdot\left(a^2+b^2+c^2+ab+bc-ca\right)\)
áp dụng suy ra kết quả
a) \(a^3+b^3+c^3=3abc\) thì \(\left\{{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
b) cho \(a^3+b^3+c^3=3abc\left(a+c\ne0\right)\)
tính B= \(\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)
Chứng minh nếu a+b+c=5 thì \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=5\)
cho a+b+c=0.CM:a3+b3+c3=3abc
cho a+b+c=0, chung minh rằng a3+b3+c3=3abc
gợi ý: từ a+b+c=0 suy ra a+b=-c. lập phương hai vế a+b=-c với chú ý 3a2b+3ab2=3ab(a+b)
Cho \(a+b+c=0\)
Chứng minh: \(a^3+b^3+c^3=3abc\)
Cho abc khác 0, \(a^3+b^3+c^3=3abc\) . Tính A= \(\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
Cho 3 số a,b,c thỏa mãn:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\)
Chứng minh: \(a^3+b^3+c^3=3abc\left(a+b+c+1\right)\)