1. Cho a,b,c > 0. CmR: \(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}\le3.\dfrac{a^2+b^2+c^2}{a+b+c}\)
2. Cho \(f\left(x\right)=ax^2+bx+c\) biết rằng: \(\left\{{}\begin{matrix}\left|f\left(0\right)\right|\le1\\\left|f\left(-1\right)\right|\le1\\\left|f\left(1\right)\right|\le1\end{matrix}\right.\)
CmR: a) \(\left|a\right|+\left|b\right|+\left|c\right|\le3\)
b) \(\left|f\left(x\right)\right|\le\dfrac{5}{4}\forall x\in\left[-1;1\right]\)
Tìm Tập xác định của các hàm số sau:
\(a.y=\dfrac{x-2}{\left|x\right|+4}+\sqrt{x-x^2}\\ b.y=\dfrac{\left|x\right|}{\left|x-3\right|+\left|x+3\right|}\\ c.y=\dfrac{x+1}{\left|x\right|-1}+\sqrt{x^2-\left|x\right|}\)
Tìm Tập xác định của các hàm số sau:
\(d.y=\dfrac{2x-1}{\sqrt{x\left|x\right|-4}}\\ e.y=\dfrac{x^2+2x+3}{\left|x^2-2x\right|+\left|x-1\right|}\\ f.y=\dfrac{\sqrt{x+2}}{x\left|x\right|+4}\\ g.y=\dfrac{\sqrt{x\left|x\right|+4}}{x}\)
Xét tính chẵn lẻ của hàm số: \(f\left(x\right)=\dfrac{\sqrt{1+x}-\sqrt{1-x}}{\left|x+2\right|-\left|x-2\right|}\)
\(f^2\left(\left|x\right|\right)+\left(m+1\right)f\left(\left|x\right|\right)-m=0\)
Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}x^2-x+1\left(x\le1\right)\\\dfrac{x^2-12}{x+2}\left(x>1\right)\end{matrix}\right.\)có đồ thị (G) TÌm tọa độ điểm M \(\in\)(G) có tung độ bằng 3
cho hàm số y=f(x)=\(\dfrac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}\) có đồ thị là \(\left(C_m\right)\) (m là tham số ) số giá trị của m để đồ thị \(\left(C_m\right)\) nhận trục Oy làm trục đối xứng
Tìm tập xác định
a) y=\(\dfrac{x-1}{\left(2x^2-5x+2\right)\left(x^3+1\right)}\)
b)y=\(\dfrac{3x\left(x^2-1\right)}{\left(x^2+2x+2\right)\left(x+5\right)}\)
c)y=\(\dfrac{x-1}{x^4-1}\)
d)\(\dfrac{1}{x^4+2x^2-3}\)
e)y=\(\dfrac{x+2}{x^3+2x^2-3x-6}\)
g) y=\(\sqrt{4-x}+\sqrt{5x+1}\)
h)y=\(\dfrac{1+x}{\left(x^2+2x-8\right)\sqrt{x-1}}\)
i)y=\(\dfrac{\sqrt{5-2x}}{\left(2x^2-5x+2\right)\sqrt{x-1}}\)
Giải các phương trình sau
1. \(\left(x-1\right)\left(x+5\right)\left(x^2+4x+8\right)+40=0\)
2. \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-15=0\)