chứng minh giá trị của biểu thức H = \(\dfrac{2x}{x+3\sqrt{x}+2}+\dfrac{5\sqrt{x}+1}{x+4\sqrt{x}+3}+\dfrac{\sqrt{x}+10}{x+5\sqrt{x}+6}\) không phụ thuộc vào biến số x
1. rút gọn biểu thức
A= \(\dfrac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\dfrac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}\)
2. rút gọn biểu thức
\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
3. rút gọn
A=\(\left(\dfrac{1}{\sqrt{x-1}}\right)-\left(\dfrac{1}{\sqrt{x+1}}\right):\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x+1}}\right)\)
4.rút gọn
P= \(\dfrac{1-\sqrt{x-1}}{\sqrt{x-2\sqrt{x-1}}}\)
5.rút gọn biểu thức
a.\(\sqrt{11-2\sqrt{16}}\)
b.\(\sqrt{9-2\sqrt{14}}\)
6.rút gọn
Q=\(\dfrac{\sqrt{x+\sqrt{x^2-y^2}}-\sqrt[]{x-\sqrt{x-y^2}}}{\sqrt{2\left(x-y\right)}}\)
7.cho biểu thức
A= \(\dfrac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\dfrac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2}-2x}\)
a. tìm đkxđ
b.rút gọn
c.tính giá trị để A<2
Tính giá trị của biểu thức A=(x3 -2x+1)2012, với x=\(\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}\) \(\sqrt{\dfrac{3\sqrt{2}+2\sqrt{3}}{3\sqrt{2}-2\sqrt{3}}}\)
cho biểu thức
A=\(\dfrac{\sqrt{x}\left(\sqrt{x^3-1}\right)}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) x>0,x≠1
a.Rút gọn biểu thức A
b.Tìm x để giá trị A=\(\dfrac{3}{4}\)
Cho biểu thức P = \(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{2-\sqrt{x}}\) (với x>0; x\(\ne\)0)
a,Rút gọn biểu thức P và tìm x để P = \(\dfrac{-3}{5}\)
b,Tìm GTNN của biểu thức A=P . \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
Cho biểu thức A=(\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\)) : (\(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1x}\))
1.Tìm điều kiện xác định của biểu thức A.
2.Rút gọn A.
3.Tính giá trị biểu thức A khi x = \(\dfrac{1}{6-2\sqrt{5}}\).
4.Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
5.Tìm giá trị của x để biểu thức A bằng -3.
6.Tìm giá trị của x để biểu thức A nhỏ hơn -1.
7.Tìm giá trị của x để biểu thức A lớn hơn \(\dfrac{-2}{\sqrt{x}+1}\)
1. Rút gọn biểu thức \(\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}\) khi \(\frac{1}{2}\le x\le1\)
2. Biểu thức \(\sqrt{a^2-1}\) xác định khi nào ❓
3. Rút gọn biểu thức \(4\left|x\right|-\sqrt{1+25x^2-10x}\) khi \(x>\frac{1}{5}\)
4. Tập nghiệm của bất phương trình \(-\sqrt{x}>-\sqrt{7}\)
5. Gía trị của biểu thức M =\(\sqrt{5-2\sqrt{6}}\)
6. Rút gọn biểu thức \(\left|x\right|-\sqrt{1-2x+x^2}\) khi \(x>\sqrt{2}\)
( Các bạn giải chi tiết giùm mình nhé ! Cảm ơn các bạn nhiều ) :) <3
Bài 1: Thực hiện phép tính
a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)
b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)
c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)
d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)
Bài 2: Rút gọn biểu thức sau
\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)
Bài 3: Cho biểu thức sau
A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)và \(x\ne4\)
a) Rút gọn A b) Tìm x để A=-3
Bài 4: Rút gọn biểu thức sau
A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\) và \(x\ne1\)
Bài 5: Cho biểu thức
C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)
a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1
Bài 6: Giải phương trình
a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)
c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)
d) \(\sqrt{4\left(x+2\right)^2}=8\)
cho biểu thuwcsl A= \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{x-9}\)với x≥0,x≠9
a) chứng minh A=\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
b) tính giá trị của A khi x=36
c) tìm x để A<\(\dfrac{1}{2}\)