1 ) Áp dụng BĐT Cô - si cho a ; b dương , ta có :
\(a+b\ge2\sqrt{ab}\Rightarrow\left(a+b\right)^2\ge4ab\Rightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\left(đpcm\right)\)
2 ) \(\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}=\dfrac{3}{2xy}+\dfrac{3}{x^2+y^2}+\dfrac{1}{2xy}=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\)
\(\ge3.\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{3.4}{1}+\dfrac{1}{\dfrac{1}{2}}=12+2=14\)
( áp dụng BĐT Cô - si cho 2 số x ; y dương và BĐT phụ \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Vậy ...