\(A=a^3-6a^2-7a+12\)
\(=\left(a^3-a\right)-6a^2-6a+12\)
\(=a\left(a^2-1\right)-6\left(a^2+a-2\right)\)
\(=\left(a-1\right)a\left(a+1\right)-6\left(a^2+a-2\right)\)
Ta thấy \(\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp nên \(\left(a-1\right)a\left(a+1\right)⋮2;3\)
Mà \(ƯCLN\left(2;3\right)=1\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)(1)
Lại có \(6\left(a^2+a-2\right)⋮6\forall a\in Z\)(2)
Từ (1);(2) \(\Rightarrow\left[\left(a-1\right)a\left(a+1\right)-6\left(a^2+a-2\right)\right]⋮6\forall a\in Z\)
Hay \(A⋮6\forall a\in Z\)(đpcm)