Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\dfrac{3a^3+7b^3}{2a+3b}+\dfrac{3b^3+7c^3}{2b+3c}+\dfrac{3c^3+7a^3}{2c+3a}\ge3\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)
Cho các số nguyên a, b, c khác ) thoả mãn điều kiện : \(\dfrac{5b+2c\left(4+c^6\right)}{a+b+c}=1.\) Chứng minh rằng: \(a^7+3b^7-2c\) chia hết cho 7.
1)Giả sử x^3+y^3=z^3 chứng minh rằng xyz chia hết cho 7
2)Cho a,b,c là số nguyên và a^3+b^3+c^3 chia hết cho 7 chứng minh abc chia hết cho 7
Cho a, b, c dương thỏa abc = 1. Chứng minh: \(\frac{1}{a^3\left(7b+3c\right)}+\frac{1}{b^3\left(7c+3a\right)}+\frac{1}{c^3\left(7a+3b\right)}\ge\frac{1}{10}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
CM: \(A=a^3-6a^2-7a+12\) chia hết cho 6 với mọi a thuộc Z
Cho 3 số thực dương thỏa mãn: \(a^3b^3 +b^3c^3+c^3a^3=3\). Chứng minh rằng: \(a^7+b^7+c^7\ge3\)
cm (2a^2+3b^2)/(2a^3+3b^3)+(2b^2+3a^2)/(2b^3+3a^3)<=4/(a+b)
1c Cho A=a+b+c và B =\(\left(a+2018\right)^3+\left(b-2019\right)^3+\left(c+2020\right)^3\) trong đó a,b,c,d là các số nguyên . CMR A chia hết cho 3 khi và chỉ khi B chia hết cho 3
2c Giả sử p và p^2 +2 đều là các số nguyên tố . Chứng minh p^3+2 cũng là 1 số nguyên tố
3b Cho x,y>0 . TÌm GTNN của biểu thức M=\(\frac{x^2+12}{x+y}+y\)
Cho các số nguyên dương: \(a_1;a_2;a_3;...;a_{2017}\)sao cho :
\(N=a_1+a_2+a_3+...+a_{2017}\)chia hết cho 30.
Chứng minh: \(M=a^5_1+a^5_2+a^5_3+...+a^5_{2017}\)chia hết cho 30.