a/ \(1+tan^2a=1+\dfrac{sin^2a}{cos^2a}=\dfrac{sin^2a+cos^2a}{cos^2a}=\dfrac{1}{cos^2a}\)
b/ \(1+cot^2a=1+\dfrac{cos^2a}{sin^2a}=\dfrac{sin^2a+cos^2a}{sin^2a}=\dfrac{1}{sin^2a}\)
a/ \(1+tan^2a=1+\dfrac{sin^2a}{cos^2a}=\dfrac{sin^2a+cos^2a}{cos^2a}=\dfrac{1}{cos^2a}\)
b/ \(1+cot^2a=1+\dfrac{cos^2a}{sin^2a}=\dfrac{sin^2a+cos^2a}{sin^2a}=\dfrac{1}{sin^2a}\)
Chứng minh:
a)\(cot^2\alpha-cos^2\alpha\cdot cot^2\alpha=cos^2\alpha\)
b)\(tan^2\alpha-sin^2\alpha\cdot tan^2\alpha=sin^2\alpha\)
c) \(\dfrac{1-cos^2}{sin\alpha}\) = \(\dfrac{sin\alpha}{1+cos\alpha}\)
d)\(tan^2\alpha-sin^2\alpha=tan^2\cdot sin^2\alpha\)
e) \(\sin^6\alpha+cos^6\alpha+3sin^2\cdot cos^2\alpha=1\)
1. cho x là góc nhọn, chứng minh \(\dfrac{1}{\sin^2}x\) - 1 = \(\dfrac{1}{\tan^2x}\)
2. cho \(\cos x=\dfrac{1}{3}\); tính giá trị của \(A=\dfrac{1}{\cot^2x}+1\)
3. đơn giản biểu thức: \(\tan^2\alpha-\sin^2\alpha.\tan^2\alpha\)
4.cho 00 < 900, c/m \(\dfrac{\sin^2\alpha-\cos^2\alpha+\cos^4\alpha}{\cos^2\alpha-\sin^2\alpha+\sin^4\alpha}=\tan^4\alpha\)
CM các hệ thức sau:
a) \(1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\)
b) \(1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\)
c) \(\cot^2\alpha-\cos^2\alpha=\cot^2\alpha.\cos^2\alpha\)
d) \(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
CMR
a)\(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b)\(\frac{\tan\alpha+1}{\tan\alpha-1}=\frac{1+\cot\alpha}{1-\cot\alpha}\)
c) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
d)\(\frac{1-4\sin^2\alpha.\cos^2\alpha}{\left(\sin\alpha-\cos\alpha\right)^2}=\left(\sin\alpha+\cos\alpha\right)^2\)
2)
a) Cho cos α = \(\dfrac{1}{3}\). Tính giá trị P = 3.sin2 α + 4.cos2 α .
b) Cho tan α = \(\dfrac{3}{4}\). Tính sin α ; cos α ; cot α .
c) Cho tan α = \(\dfrac{1}{2}\). Tính \(\dfrac{cosa-sina}{cosa+sina}\) ( α nhọn ).
1)
a) cot2 α+ 1 = \(\dfrac{1}{sin^2a}\)
b)1 + tan2 α = \(\dfrac{1}{cos^2a}\)
c) sin4 α+ cos2α = 2.sin2α . cos2 α
d) \(\dfrac{1-4.sin^2a.cos^2a}{\left(sina+cosa\right)^2}=1-2.sina.cosa\)
e) \(\dfrac{2.sina.cosa-1}{cos^2a-sin^2a}=\dfrac{tana-1}{tana+1}\)
CMR:
\(a.tan^2\alpha+1=\dfrac{1}{cos^2\alpha}\)
b)\(cot^2\alpha+1=\dfrac{1}{sin^2\alpha}\)
c)\(cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
TÍNH
a) A= tan 1 độ* tan 2 độ * tan 3 độ.....tan 89 độ
b) Cho góc nhọn α,tan α=\(\dfrac{1}{2}\) tính:
B=\(\dfrac{\sin\alpha+2\cos\alpha}{3\sin\alpha-4\cos\alpha}\)
D=\(\dfrac{2\sin^2\alpha-3\cos^2\alpha}{4\cos^2\alpha-5\sin^2\alpha}\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Sử dụng định nghĩa các tỉ số lượng giác của 1 góc nhọnđể chứng minh rằng:với mỗi góc nhọn α tùy ý ,ta có:
a,tan α=\(\frac{sin\alpha}{cos\alpha}\),cot α=\(\frac{cos\alpha}{sin\alpha}\),tan α.cot α=1
b,sin2α+cos2α=1
c,1+tan2α=\(\frac{1}{cos^2\alpha}\),1+cot2α=\(\frac{1}{sin^2\alpha}\)