Cho tam giác ABC vuông tại A. CMR
a, \(\sin B< 1;\cos B< 1\)
b, \(\tan B=\frac{\sin B}{\cos B}\)
c, \(\cot B=\frac{\cos B}{\sin B}\)
d, \(\tan B.\cot B=1\)
e, \(\sin^2B+\cos^2B=1\)
\(\cot B=\frac{\cos B}{\sin B}\)
1. Cho tam giác ABC vuông tại A, đường cao AH . Biết AH=6cm , HC - HB = 9cm. Tính các độ dài HB,HC.
2. Cho cos a = 0,28. Tính các giá trị lượng giác còn lại của góc a.
3. Tìm sin α, cos α biết:
a) tg α = \(\frac{3}{4}\) b) cotg α = \(\frac{5}{12}\)
4. Cho tan α = 4. Tính giá trị biểu thức
a) A= \(\frac{\sin a+\cos a}{\sin a-\cos a}\) b) B= \(\frac{3\sin^2a-3\cos^2a}{3\sin^2a-5\cos^2a}\)
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào số đo của góc nhọn \(\alpha\)
\(\sin^4\alpha+\sin^2\alpha\cdot\cos^2\alpha+\cos^2\alpha\)
\(\frac{1}{1+\sin\alpha}+\frac{1}{1-\sin\alpha}-2\tan^2\alpha\)
Giúp mình vs chiều phải nộp bài rồi
a)C= \(4\cos^2\alpha-3\sin^2\alpha.cos=\frac{4}{7}\)
b)\(\cos^2\alpha+\cos^2\beta+\cos^2\alpha.\sin^2\beta+\sin^2\alpha\)
c)2\(\left(\sin\alpha-\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha.\cos\alpha\right)\)
d)\(\left(\tan\alpha-\cot\alpha\right)^2-\left(\sin\alpha+\cot\alpha\right)^2\)
1.a) Chứng minh \(\dfrac{sin^4-cos^4}{sin+cos}=sin-cos\)
b) \(sin^6+cos^6+3cos^2\cdot sin^2=1\)
Tính
\(A=sinx.cosx+\frac{sin^2x}{1+cotx}+\frac{cos^2x}{1+tanx}\)
Biết sin α = \(\frac{2}{5}\). Tính giá trị A= 3sin2α + 8 cos2α - 2 sinα.cosα
Tìm số đo góc nhọn x:
a) \(4\sin x-1=1\)
b) \(2\sqrt{3}-3\tan x=\sqrt{3}\)
c) \(7\sin-3\cos\left(90^o-x\right)=2,5\)
d) \(\left(2\sin-\sqrt{2}\right)\left(4\cos-5\right)=0\)
e) \(\dfrac{1}{\cos^2x}-\tan x=1\)
f) \(\cos^2x-3\sin^2x=0,19\)
Chứng minh rằng: \(\dfrac{\sin\alpha+\cos\alpha-1}{1-\cos\alpha}\)=\(\dfrac{2\cdot\cos\alpha}{\sin\alpha-\cos\alpha+1}\)