1. \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)
2. \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy-2yz+2xz\)
3. \(\left(x+y-z\right)^2=x^2+y^2+z^2+2xy-2yz-2zx\)
4. \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy+2yz-2zx\)
5./6. Kết hợp từ trên
1. \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)
2. \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy-2yz+2xz\)
3. \(\left(x+y-z\right)^2=x^2+y^2+z^2+2xy-2yz-2zx\)
4. \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy+2yz-2zx\)
5./6. Kết hợp từ trên
toan 8 cho (x+y)(x+z)+(y+z)(y+x)=2(z+x)(z+y) chung minh z^2=x^2+y^2/2
Phân tích:
a)(x-y)3+(y-z)3+(z-x)3
b)x.(y2-z2)+y.(z2-x2)+z.(x2-y2)
c)xy.(x-y)-xz.(x+z)-yz.(zx-y+z)
d)x.(y+z)2+y.(z-x)2+z.(x+y)2-4xyz
Bài 1:
a, Cho ba số x,y,z đôi một khác nhau. Chứng minh rằng:
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(y-x\right)}=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\)
cho x,y,z>0 chứng minh: x^3y^2+y^3/z^2+z^3/x^2>=x^2/y+y^2/z+z^2/x
Chứng minh rằng nếu:
\((x-y)^2+(y-z)^2+(z-x)^2=(y+z-2x) ^2+(z+x-2y)^2+(x+y-2z)^2\)
thì x = y = z
Cho x;y;z > 1;x+y+z=1
Tìm GTNN của \(M=\frac{x-2}{z^2}+\frac{y-2}{x^2}+\frac{z-2}{y^2}\)
Cho x^2-y=a
y^2-z=b
z^2-x=c
CMR: Giá trị biểu thức sau ko phụ thuộc vào biến
P=x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
(x-y+z)2 + (z-y)2 + 2(x-y+z)(y-z)