Ta có:
*\(\overline{abcabc}=100000a+10000b+1000c+100a+10b+1c\)
\(=100100a+10010b+1001c\)
\(=11.9100a+11.910b+11.91c\)
\(=11\left(9100a+910b+91c\right)\)
Rõ ràng \(\overline{abcabc}⋮11\)
*\(\overline{abcabc}=100000a+10000b+1000c+100a+10b+1c\)
\(=100100a+10010b+1001c\)
\(=13.7700a+13.770b+13.77c\)
\(=13\left(7700a+770b+77c\right)\)
Rõ ràng \(\overline{abcabc}⋮13\)
*\(\overline{abcabc}=100000a+10000b+1000c+100a+10b+1c\)
\(=100100a+10010b+1001c\)
\(=7.14300a+7.1430b+7.143c\)
\(=7\left(14300a+1430b+143c\right)\)
Rõ ràng \(\overline{abcabc}⋮7\)