vì \(\left(x-2003\right)^2\ge\) 0 với mọi x
nên ta có hai trường hợp:
TH1: nếu a và c cùng là số âm thì \(a\left(x-2003\right)^2+c\le c< 0\)
\(\Rightarrow\)f(x) vô ngiệm.
TH2: nếu a và c cùng là số dương thì \(a\left(x-2003\right)^2+c\ge c>0\)
\(\Rightarrow\)f(x) vô nghiệm.
vậy nếu a và c cùng dấu thì đa thức f(x) vo nghiệm
mình chép thiếu, đề bài là:
chứng tỏ rằng nếu a và c cùng dấu thì đa thức:
f(x) = \(a\left(x-2003\right)^2+c\)