Gọi biểu thức trên là A:
Có 1/22=1/2.2<1/1.2; 1/32=1/3.3<1/2.3;.....;1/1002=1/100.100<1/99.100
=>A<1/1.2+1/2.3+1/3.4+....+1/99.100
=>A< 1/1-1/2+1/2-1/3+1/3-1/4+....+1/99-1/100
=>A<1-1/100=99/100
=>A<1 vì 99/100<1 mà A<99/100
\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{99.100}\)
\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+...+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\)
\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{1}\)-\(\dfrac{1}{100}\)=\(\dfrac{100}{100}\)-\(\dfrac{1}{100}\)=\(\dfrac{99}{100}\)
Vì \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{100^2}\)<\(\dfrac{99}{100}\)<1 nên \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{100^2}\)<1
Vậy \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{100^2}\)<1.