a, Ba số tự nhiên liên tiếp là a; a+1; a+2
Tổng 3 số tự nhiên liên tiếp ấy: a+a+1+a+2= 3a+3= 3(a+1)\(⋮3\)
b, Bốn số tự nhiên liên tiếp lần lượt là b;b+1;b+2;b+3
Tổng chúng bằng: b+b+1+b+2+b+3= 4b+6 = 4(b+1) (dư 2)
=> Ko chia hết.
a, Gọi 3 số tự nhiên liên tiếp là \(a,a+1,a+2\) \(\left(a\in N\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)=a+a+1+a+2\)
\(=\left(a+a+a\right)+\left(1+2\right)=3a+3=3\left(a+1\right)⋮3\)
\(\Rightarrow a+\left(a+1\right)+\left(a+2\right)⋮3\)
Vậy tổng ba số tự nhiên liên tiếp chia hết cho 3
b, Gọi 4 số tự nhiên liên tiếp là \(a,a+1,a+2,a+3\left(a\in N\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)=a+a+1+a+2+a+3\)
\(=\left(a+a+a+a\right)+\left(1+2+3\right)=4a+6\)
Vì \(a\in N\Rightarrow4a⋮4\) mà \(6⋮̸\)4
\(\Rightarrow4a+6⋮̸\) 4 hay \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)⋮̸\)4
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
a, Gọi 3 số tự nhiên liên tiếp là a,a+1,a+2 (a∈N)
Ta có : a+(a+1)+(a+2)=a+a+1+a+2a+(a+1)+(a+2)=a+a+1+a+2
=(a+a+a)+(1+2)=3a+3=3(a+1)⋮3=(a+a+a)+(1+2)=3a+3=3(a+1)⋮3
⇒a+(a+1)+(a+2)⋮3⇒a+(a+1)+(a+2)⋮3
Vậy tổng ba số tự nhiên liên tiếp chia hết cho 3
b, Gọi 4 số tự nhiên liên tiếp là a,a+1,a+2,a+3(a∈N)a,a+1,a+2,a+3(a∈N)
Ta có : a+(a+1)+(a+2)+(a+3)=a+a+1+a+2+a+3a+(a+1)+(a+2)+(a+3)=a+a+1+a+2+a+3
=(a+a+a+a)+(1+2+3)=4a+6=(a+a+a+a)+(1+2+3)=4a+6
Vì a∈N⇒4a⋮4a∈N⇒4a⋮4 mà 6⋮̸ 6⋮̸4
⇒4a+6⋮̸ ⇒4a+6⋮̸ 4 hay a+(a+1)+(a+2)+(a+3)⋮̸ a+(a+1)+(a+2)+(a+3)⋮̸4
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4