Gọi d là ƯCLN (2n + 1; 3n + 2)
=> \(\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)
=> (6n + 4) - (6n + 3) ⋮d
=> 6n + 4 - 6n - 3 ⋮d
=> 1 ⋮d
=> d = 1
=> ƯCLN(2n + 1; 3n + 1) = 1
Vậy hai số 2n + 1 và 3n + 2 là hai số nguyên tố cùng nhau.