Cho x,y,z > 0 , x + y + z <= \(\frac{3}{2}\). C/m : \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}>=\frac{3}{2}\sqrt{17}\)
Cho x,y,z >0 thỏa x+y+z=xyz.Chứng minh rằng:
\(P=\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}+\frac{1}{\sqrt{z^2+1}}\le\frac{3}{2}\)
a) CMR: \(\frac{1}{\sqrt{a+3}+\sqrt{a+2}}+\frac{1}{\sqrt{a+2}+\sqrt{a+1}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b) Cho các số thực dương x, y, z thỏa mãn x+y+z=1. CMR: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\le\frac{9}{4}\)
1 . Cho x+y+z=xyz. Tìm Min A= \(\frac{y}{x\sqrt{y^2+1}}+\frac{z}{y\sqrt{z^2+1}}+\frac{x}{z\sqrt{x^2+1}}\)
2 . Cho a,b,c>0 thỏa a+b+c=3, tìm GTNN
\(P=\frac{25a^2}{\sqrt{2a^2+16ab+7b^2}}+\frac{25b^2}{\sqrt{2b^2+16bc+7c^2}}+\frac{c^2\left(a+3\right)}{a}\)
Chứng minh rằng: Nếu \(ax^3=by^3=cz^3\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) thì \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
1. Rút gọn: \(\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\left(\sqrt{4-\sqrt{15}}\right)\)
2. Cho 3 số dương thỏa x + y + z = 2
Tìm GTNN của A = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Cho A= \(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{2\sqrt{z}}{\sqrt{zx}+2\sqrt{z}+2}\)
Biết xyz=4. Tính \(\sqrt{A}\)
Cho các số thực dương x2 + y2 + z2 = 3
Chứng minh rằng : \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+xz\)