Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Angela jolie

Cho A= \(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{2\sqrt{z}}{\sqrt{zx}+2\sqrt{z}+2}\)

Biết xyz=4. Tính \(\sqrt{A}\)

Akai Haruma
3 tháng 11 2019 lúc 10:22

Lời giải:

Đặt $(\sqrt{x}, \sqrt{y}, \sqrt{z})=(a,b,c)$. Khi đó:

$abc=\sqrt{xyz}=2$

$A=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ca+2c+2}$

$=\frac{a}{ab+a+2}+\frac{ab}{abc+ab+a}+\frac{2c}{ca+2c+abc}$

$=\frac{a}{ab+a+2}+\frac{ab}{2+ab+a}+\frac{2}{a+2+ab}$

$=\frac{a+ab+2}{ab+a+2}=1$

$\Rightarrow \sqrt{A}=1$

Vậy.........

Khách vãng lai đã xóa
Lê Minh Thư
4 tháng 1 2020 lúc 11:19

Ta có: \(xyz=4\Leftrightarrow\sqrt{xyz}=\sqrt{4}=2\)

\( A=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\frac{\sqrt{y}}{\sqrt{xy}+\sqrt{y}+1}+\frac{2\sqrt{z}}{\sqrt{zx}+2\sqrt{z}+2}\)

\(=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\frac{\sqrt{xy}}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}+\frac{2\sqrt{z}}{\sqrt{xz}+\sqrt{xyz}\sqrt{z}+\sqrt{xyz}}\\ =\frac{\sqrt{x}}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}+\frac{\sqrt{xy}}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}+\frac{2}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}\\ =\frac{\sqrt{x}+\sqrt{xy}+2}{\sqrt{xyz}+\sqrt{xy}+\sqrt{z}}\\ =\frac{\sqrt{x}+\sqrt{xy}+\sqrt{xyz}}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}\\ =1\)

\(\Leftrightarrow A=1\\ \Rightarrow\sqrt{A}=\sqrt{1}=1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Hoàng Linh Chi
Xem chi tiết
Ánh Dương
Xem chi tiết
nguyễn minh
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
hello sunshine
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Ngọc Nhi
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết