Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính giá trị của biểu thức:
\(\dfrac{\dfrac{1}{2013}+\dfrac{2}{2012}+\dfrac{3}{2011}+...+\dfrac{2011}{3}+\dfrac{2012}{2}+\dfrac{2013}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}}\)
chứng minh a2+\(\dfrac{1}{4}\) ≥ a
Cho a.b.c=1 và \(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Chứng minh tồn tại 1 trong 3 số a,b,c =1
a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2
Cho 3 số dương a, b, c. Chứng minh rằng:
\(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{a+b+c}{2}\)
Cho a; b là các số dương. Chứng minh \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{ab}\)
Cho a, b là các số dương. Chứng minh \(\dfrac{1}{a}+\dfrac{1}{b}\)≥\(\dfrac{4}{a+b}\)
Cho a, b, c là ba số dương thoả mãn abc = 1. Chứng minh rằng: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho a, b là các số dương. Chứng minh: \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)=>\(\dfrac{4}{a+b}\)