\(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\)
\(=\tan^2\alpha\cdot\left(1-\cos^2\alpha\right)\)
\(=\tan^2\alpha\cdot\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)\)
\(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\\ =\tan^2\alpha\left(1-\sin^2\alpha\right)=\tan^2\alpha\cdot\cos^2\alpha\\ =\dfrac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha=\sin^2\alpha\\ =1-\cos^2\alpha=\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)\)