Chứng minh rằng:
\(B=\sqrt{5\sqrt{5}\sqrt{5}...\sqrt{5}\sqrt{5}}+\sqrt{6+\sqrt{6}+\sqrt{6}+...\sqrt{6}+\sqrt{6}}< 8\)
Chứng mỉnh rằng
\(\sqrt{5\sqrt{5\sqrt{5...\sqrt{5\sqrt{5}}}}}+\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{6}}}}}< 8\)
1.Tính và thu gọn:
a) \(\sqrt{\left(\sqrt{5}+1\right)}-\sqrt{\left(\sqrt{5}-2\right)^2}\)
b) \(\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}-2\sqrt{4-2\sqrt{3}}\)
c) Chứng minh: \(\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}}< 3\) ( Có 2009 dấu căn )
d) Chứng minh: \(\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2...\sqrt{2}}}}}}< 2\) ( Có 2010 dấu căn )
2. Tìm x biết:
* \(\sqrt{x^2+8x+16}+\sqrt{y^2-y+\dfrac{1}{4}}=0\)
3.Tính:
a) \(A=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2009}+\sqrt{2010}}\)
b) Cho \(\left(x+\sqrt{x^2+2009}\right)\left(y+\sqrt{y^2+2009}\right)=2009\) , tính S= x+y
4. Tìm giá trị nhỏ nhất của biểu thức:
\(M=\sqrt{a+3-4\sqrt{a-1}}+\sqrt{a+15-8\sqrt{a-1}}\)
Chứng minh \(4< \sqrt{6+\sqrt{6+...+\sqrt{6}}}+\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}< 5}\)
Chứng minh: \(4< \sqrt{6+\sqrt{6+...+\sqrt{6}}}+\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}}< 5\)
Trục căn thức ở mẫu và rút gọn
a, (\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\))(\(\sqrt{6} +11\))
b,(\(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\))(\(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\))
c,\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)- (\(\sqrt{2}+\sqrt{3}\))
d,(\(\frac{5-2\sqrt{5}}{2-\sqrt{5}}-2\))(\(\frac{5+3\sqrt{5}}{3+\sqrt{5}}-2\))
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
\(\sqrt{\dfrac{5+2\sqrt{6}}{5-\sqrt{6}}}+\sqrt{\dfrac{5-2\sqrt{6}}{5+\sqrt{6}}}\)
1, \(\dfrac{6-\sqrt{6}}{\sqrt{6}-1}+\dfrac{6+\sqrt{6}}{\sqrt{6}}\)
2, \(\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}\)
3, \(\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}\)
4, \(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\dfrac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
5, \(\left(\dfrac{3\sqrt{125}}{15}-\dfrac{10-4\sqrt{5}}{\sqrt{5}-2}\right)\cdot\dfrac{1}{\sqrt{5}}\)