Chứng minh \(4< \sqrt{6+\sqrt{6+...+\sqrt{6}}}+\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}< 5}\)
1.Chứng minh
a) \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=2\sqrt{3}\)
b) A= \(\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\) là số nguyên.
1, \(\dfrac{6-\sqrt{6}}{\sqrt{6}-1}+\dfrac{6+\sqrt{6}}{\sqrt{6}}\)
2, \(\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}\)
3, \(\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}\)
4, \(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\dfrac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
5, \(\left(\dfrac{3\sqrt{125}}{15}-\dfrac{10-4\sqrt{5}}{\sqrt{5}-2}\right)\cdot\dfrac{1}{\sqrt{5}}\)
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
* Chứng minh đẳng thức
\(\left(\dfrac{\sqrt{30}-\sqrt{20}}{\sqrt{3}-\sqrt{2}}-\dfrac{6}{\sqrt{6}}\right)\sqrt{4+\sqrt{15}}=2\)
Chứng minh rằng :
D=\(\sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{6++...+\sqrt[3]{6}}}}< 2\)
* Giải phương trình
\(\sqrt{4x+8}+3\sqrt{x+2}=3+\dfrac{4}{5}\sqrt{25x+50}\)
* Chứng minh đẳng thức
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
Chứng minh rằng:
\(B=\sqrt{5\sqrt{5}\sqrt{5}...\sqrt{5}\sqrt{5}}+\sqrt{6+\sqrt{6}+\sqrt{6}+...\sqrt{6}+\sqrt{6}}< 8\)
Chứng minh: \(\sqrt{5\sqrt{5\sqrt{5\sqrt{5...\sqrt{5}}}}}+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6...+\sqrt{6}}}}}}\le8\) có 2018 dấu căn ở mỗi hạng tử