Ta có :
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Leftrightarrow x^3=\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)^3\)
\(=18+3\sqrt[3]{\left(9+4\sqrt{5}\right)^2\left(9-4\sqrt{5}\right)}+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)^2}\)
\(=18+3\sqrt{\left(9+4\sqrt{5}\right)\left(9^2-4\sqrt{5}^2\right)}+3\sqrt{\left(9-4\sqrt{5}\right)\left(9^2-4\sqrt{5}^2\right)}\)
\(=18+3\sqrt[3]{9+4\sqrt{5}}+3\sqrt[3]{9-4\sqrt{5}}=18+3x\)
⇔ x3 - 3x - 18 = 0 ⇒ đpcm