Đặt \(A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)
Vì \(a,b,c\in Z\)*
\(\Rightarrow A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{b+c+a}+\dfrac{c}{c+a+b}\)
\(\Rightarrow A>\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow A>1\)
Vì \(a,b,c\in Z\)*
\(\Rightarrow A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{b+c+a}+\dfrac{c+b}{c+a+b}\)
\(\Rightarrow A< \dfrac{a+c+b+a+c+b}{a+b+c}=2\)
\(\Rightarrow A< 2\)
Vậy \(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)
Đặt \(A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)
Vì \(a,b,c\in Z\)*
\(\Rightarrow\dfrac{a}{a+b}>\dfrac{a}{a+b+c}\)
Nên: \(\dfrac{b}{b+c}>\dfrac{b}{b+c+a};\dfrac{c}{c+a}>\dfrac{c}{c+a+b}\)
Vậy\(A=\)\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow A>1\)(1)
Lại có :\(\dfrac{a}{a+b}< \dfrac{a+b}{a+b+c}\)
Nên:\(\dfrac{b}{b+c}< \dfrac{b+c}{b+c+a};\dfrac{c}{c+a}< \dfrac{c+a}{c+a+b}\)
Vậy\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+b+b+c+c+a}{a+b+c}\)
=\(\dfrac{2.\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow A< 2\)(2)
Từ (1) và (2) \(\Rightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)
\(\Rightarrow A\) không phải là số nguyên