Từ M kẻ MP ⊥ Ox, MQ ⊥ Oy
=> = cosα; =
= sinα;
Trong tam giác vuông MPO:
MP2+ PO2 = OM2 => cos2 α + sin2 α = 1
Từ M kẻ MP ⊥ Ox, MQ ⊥ Oy
=> = cosα; =
= sinα;
Trong tam giác vuông MPO:
MP2+ PO2 = OM2 => cos2 α + sin2 α = 1
Chứng minh rằng biểu thức sau ko phụ thuộc vào α: B= sin^4α - cos^4α -2sin^2α +1
cho sin α bằng 1/3 và π/2 <α<π . Tính giá trị của cosα,tanα,và cotα
Cho α là góc tù và sinα-cosα=4/5. Giá trị M=sinα-2cosα
Cho tan \(\alpha\)- 3cot \(\alpha\) = 2 và π/2 < α < π
Tìm \(\sin\alpha,\cos\alpha\)
Cho AOB là tam giác cân tại O có OA = a và có các đường cao OH và AK. Giả sử = α. Tính AK và OK theo a và α.
Chứng minh rằng với mọi góc \(\alpha\left(0^0\le\alpha\le180^0\right)\) ta đều có \(\cos^2\alpha+\sin^2\alpha=1\) ?
Rút gọn biểu thức \(P=\dfrac{1}{\sin\alpha.\sin2\alpha}+\dfrac{1}{\sin2\alpha.\sin3\alpha}+.....+\dfrac{1}{\sin n\alpha.\sin\left(n+1\right)\alpha}\)
(Giúp mik với !!!)
Chứng minh rằng với \(0^0\le x\le180^0\) ta có :
a) \(\left(\sin x+\cos x\right)^2=1+2\sin x\cos x\)
b) \(\left(\sin x-\cos x\right)^2=1-2\sin x\cos x\)
c) \(\sin^4x+\cos^4x=1-2\sin^2x\cos^2x\)
Chứng minh rằng trong tam giác ABC ta có:
a) sinA = sin(B + C); b) cos A = -cos(B + C)