Chứng minh rằng trong tam giác ABC ta có :
a) \(\sin A=\sin\left(B+C\right)\)
b) \(\cos A=-\cos\left(B+C\right)\)
Chứng minh rằng trong tam giác ABC ta có :
a) \(\sin A=\sin\left(B+C\right)\)
b) \(\cos A=-\cos\left(B+C\right)\)
Cho AOB là tam giác cân tại O có OA = a và có các đường cao OH và AK. Giả sử \(\widehat{AOH}=\alpha\). Tính AK và OK theo a và \(\alpha\) ?
Thảo luận (1)Hướng dẫn giảiTa có = 2α => Trong tam giác OKA có:
AK = OA.sin. => AK = a.sin2α
OK =OA.cos. => OK = a.cos2α
(Trả lời bởi Anh Triêt)
Chứng minh rằng :
a) \(\sin105^0=\sin75^0\)
b) \(\cos170^0=-\cos10^0\)
c) \(\cos122^0=-\cos58^0\)
Thảo luận (1)Hướng dẫn giảia) Ta có: sin 1050 = sin(1800-1050) => sin 1050= sin 750
b) cos1700= -cos(1800-1700) => cos1700 = -cos100
c) cos1220 = -cos(1800-1220) => cos1220 = -cos580
(Trả lời bởi Anh Triêt)
Chứng minh rằng với mọi góc \(\alpha\left(0^0\le\alpha\le180^0\right)\) ta đều có \(\cos^2\alpha+\sin^2\alpha=1\) ?
Thảo luận (1)Hướng dẫn giảiTừ M kẻ MP ⊥ Ox, MQ ⊥ Oy
=> = cosα; =
= sinα;
Trong tam giác vuông MPO:
MP2+ PO2 = OM2 => cos2 α + sin2 α = 1
(Trả lời bởi Anh Triêt)
Cho góc x, với \(\cos x=\dfrac{1}{3}\). Tính giá trị của biểu thức : \(P=3\sin^2x+\cos^2x\) ?
Thảo luận (1)Hướng dẫn giảiTa có sin2x + cos2x = 1 => sin2x = 1 - cos2x
Do đó P = 3sin2x + cos2x = 3(1 - cos2x) + cos2x
=> P = 3 - 2cos2x
Với cosx = => cos2x = => P= 3 - =
(Trả lời bởi Anh Triêt)
Cho hình vuông ABCD. Tính :
\(\cos\left(\overrightarrow{AC},\overrightarrow{BA}\right);\sin\left(\overrightarrow{AC},\overrightarrow{BD}\right);\cos\left(\overrightarrow{AB},\overrightarrow{CD}\right)\)
Thảo luận (2)Hướng dẫn giải(Trả lời bởi Bùi Thị Vân)
\(cos\left(\overrightarrow{AC};\overrightarrow{BA}\right)=cos\left(\overrightarrow{AC};\overrightarrow{AB'}\right)=cos\widehat{CAB'}=cos135^o\)\(=\dfrac{\sqrt{2}}{2}\).
\(sin\left(\overrightarrow{AC};\overrightarrow{BD}\right)=sin90^o=1\) do \(AC\perp BD\).
\(cos\left(\overrightarrow{AB};\overrightarrow{CD}\right)=cos180^o=-1\) do hai véc tơ \(\overrightarrow{AB};\overrightarrow{CD}\) ngược hướng.
Với những giá trị nào của góc \(\alpha\) (\(0^0\le\alpha\le180^0\)) thì :
a) \(\sin\alpha\) và \(\cos\alpha\) cùng dấu ?
b) \(\sin\alpha\) và \(\cos\alpha\) khác dấu ?
c) \(\sin\alpha\) và \(\tan\alpha\) cùng dấu ?
d) \(\sin\alpha\) và \(\tan\alpha\) khác dấu ?
Thảo luận (1)Hướng dẫn giảia) \(0< \alpha< 90^o\)
(Trả lời bởi Bùi Thị Vân)
b) \(90^o< \alpha< 180^o\)
c) \(0< \alpha< 90^o\)
d) \(90^o< \alpha< 180^o\)
Tính giá trị lượng giác của các góc sau đây :
a) \(120^0\)
b) \(150^0\)
c) \(135^0\)
Thảo luận (1)Hướng dẫn giảia) \(sin120^o=sin60^o=\dfrac{\sqrt{3}}{2};cos120^o=-cos60^o=-\dfrac{1}{2}\);
(Trả lời bởi Bùi Thị Vân)
\(tan120^o=-\sqrt{3};cot120^o=\dfrac{-1}{\sqrt{3}}\).
b) \(sin150^o=sin30^o=\dfrac{1}{2};cos150^o=-cos30^o=-\dfrac{\sqrt{3}}{2}\).
\(tan150^o=-tan30^o=-\dfrac{\sqrt{3}}{3}\); \(cot150^o=-cot30^o=-\sqrt{3}\).
c)\(sin135^o=sin45^o=\dfrac{\sqrt{2}}{2};cos135^o=-cos45^o=-\dfrac{\sqrt{2}}{2}\).
\(tan135^o=-tan45^o=-1\); \(cot135^o=-1\).
Tính giá trị của biểu thức :
a) \(2\sin30^0+3\cos45^0-\sin60^0\)
b) \(2\cos30^0+3\sin45^0-\cos60^0\)
Thảo luận (1)Hướng dẫn giảia)
(Trả lời bởi Bùi Thị Vân)
\(2sin30+3sin45^o-sin60^o=2.\dfrac{1}{2}+3.\dfrac{\sqrt{2}}{2}-\dfrac{\sqrt{3}}{2}\)\(=\dfrac{2+3\sqrt{2}-\sqrt{3}}{2}\).
b)\(2cos30^o+3sin45^o-cos60^o=2.\dfrac{\sqrt{3}}{2}+3.\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\)\(=\dfrac{2\sqrt{3}+3\sqrt{2}-1}{2}\).
Rút gọn biểu thức :
a) \(4a^2\cos^260^0+2ab.\cos^2180^0+\dfrac{4}{3}\cos^230^0\)
b) \(\left(a\sin90^0+b\tan45^0\right)\left(a\cos0^0+b\cos180^0\right)\)
Thảo luận (1)Hướng dẫn giảia)
(Trả lời bởi Bùi Thị Vân)
\(4a^2cos^260^o+2ab.cos^2180^o+\dfrac{4}{3}cos^230^o\)
\(=4a^2.\left(\dfrac{1}{2}\right)^2+2ab.\left(-1\right)^2+\dfrac{4}{3}.\left(\dfrac{\sqrt{3}}{2}\right)^2\)
\(=4a^2.\dfrac{1}{4}+2ab+\dfrac{4}{3}.\dfrac{3}{4}\)
\(=a^2+2ab+1\).
b)
\(\left(asin90^o+btan45^o\right)\left(acos0^o+bcos180^o\right)\)
\(=\left(a+b\right)\left(a-b\right)=a^2-b^2\).