Tổng 3 số tự nhiên liên tiếp có dạng:
n + (n + 1) + (n + 2) = n + n + 1 + n + 2 = 3n + 3 = 3.(n + 1) chia hết cho 3
Tổng 4 số tự nhiên liên tiếp có dạng:
n + (n + 1) + (n + 2) + (n + 3) = n + n + 1+ n + 2 + n + 3 = 4n + 6
Vì 4n chia hết cho 4 mà 6 không chia hết cho 4
=> Tổng 4 số tự nhiên liên tiếp không chia hết cho 4
a) Gọi 3 số tự nhiên liên tiếp là n-1; n; n+1 (n>0)
Ta có: A = (n-1) + n + (n+1)
= n - 1 + n + n + 1
= (n+n+n) + (1-1)
= 3n chia hết cho 3
=> A chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b) Đề phải là: chứng minh tổng của 4 sô tự nhiên liên tiếp chia hết cho 2
Gọi 4 số tự nhiên liên tiếp đó là n-1; n; n+1; n+2 (n>0)
Ta có: B = (n-1) + n + ( n+1) + (n+2)
= n - 1 + n + n + 1 + n + 2
= (n + n + n + n) + (2 + 1 -1)
= 4n + 2
= 2 x (n+1) chia hết cho 2
=> B chia hết cho 2
=> Tổng của 4 số tự nhiên liên tiếp chia hết cho 2
Chúc bạn học tốt!