Theo bài ra, ta có:
\(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\)
\(\Rightarrow S=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\right)+\left(\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}\right)+\left(\dfrac{1}{15}+\dfrac{1}{16}\right)\)
\(\Rightarrow S< \left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{6}.3+\dfrac{1}{9}.3+\dfrac{1}{12}.3+\dfrac{1}{15}.3\)
\(\Rightarrow S< \left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\)
\(\Rightarrow S< 2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)\)
\(\Rightarrow S< 2\left[\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)\right]\)
\(\Rightarrow S< 2\left(\dfrac{2}{2}+\dfrac{2}{4}\right)\)
\(\Rightarrow S< 2\left(\dfrac{2}{2}+\dfrac{1}{2}\right)\)
\(\Rightarrow S< 2.\dfrac{3}{2}\)
\(\Rightarrow S< 3\left(1\right)\)
Lại có: \(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\)
\(\Rightarrow S=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}\right)\)
\(\Rightarrow S>\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\dfrac{1}{8}.4+\dfrac{1}{12}.4+\dfrac{1}{16}.4\)
\(\Rightarrow S>\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)\)
\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{2}{4}\right)\)
\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{2}\right)\)
\(\Rightarrow S>2\)
Từ (1) và (2) suy ra \(2< S< 3\)
⇒ S không phải 1 số nguyên
Vậy...