Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hien Pham

Chứng minh rằng nếu x+y+z=0 thì:2 (x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)

đề bài khó wá
27 tháng 2 2018 lúc 10:35

Vì x+y+z=0
=>x+y=-z =>(x+y)^5=-z^5
hay x^5+y^5+5(x^4y+xy^4+2x³y²+2x²y³+)=-z^5
<=>x^5+y^5+z^5+5xy(x³+y³+2x²y+2x²y)=0
<=>x5+y^5+z^5+5xy(x+y)(x²-xy+y²+2xy)=0
<=>x^5+y^5+z^5-5xyz(x²+xy+y²)=0
<=>x^5+y^5+z^5=5xyz(x²+xy+y²)
<=>2(x^5+y^5+z^5)=5xyz(2x²+2xy+2y²)
<=>2(x^5+y^5+z^5)=5xyz[x²+y²+(x+y)²]
<=>2(x^5+y^5+z^5)=5xyz(x³+y²+z²)


Các câu hỏi tương tự
Đinh Thị Minh Ánh
Xem chi tiết
Đinh Thị Minh Ánh
Xem chi tiết
Achana
Xem chi tiết
Nguyễn Ngọc Trâm
Xem chi tiết
Big City Boy
Xem chi tiết
Thỏ bông
Xem chi tiết
Phan Tiến Nhật
Xem chi tiết
Le Chi
Xem chi tiết
:vvv
Xem chi tiết