cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng :\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Chứng minh rằng với \(n\in N\)* thì:
a, \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
b, \(1^3+2^3+3^3+...+n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2\)
c, \(n+2\left(n-1\right)+3\left(n-2\right)+...+n=\frac{n\left(n+1\right)\left(n+2\right)}{6}\)
Cho 3 số đôi một khác nhau. Chứng minh rằng : \(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}\) =\(2\left(\dfrac{1}{a-b}+\dfrac{1}{b-c}+\dfrac{1}{c-a}\right)\)
1.Tính
\(\left(1-\dfrac{1^2}{100}\right)\left(1-\dfrac{2^2}{100}\right)\left(1-\dfrac{3^2}{100}\right)...\left(1-\dfrac{2018^2}{100}\right)\)
2.S=\(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\)
Chứng minh rằng S <\(\dfrac{1}{2}\)
Chứng minh rằng nếu \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\) trong đó \(a;b;c\ne0\) và khác nhau thì \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
cho tỉ lệ thúc \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng
\(a,\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(b,\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
cho tỉ lệ thức a/b=c/d. Chứng minh rằng
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
tính giá trị của\(\dfrac{a^2\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)\left(a^3-3b\right)}{a^{10}++b^{10}}\):
A= tại a=6;b=12
Cho\(\frac{a}{b}\)=\(\frac{c}{d}\),chứng minh rằng \(\frac{ab}{cd}\)=\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)