1.Chứng minh rằng:
a) \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
b) Cho A = \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
Chứng minh \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
2. Tìm a, b \(\in\) Q, biết
a - b = a.b = a : b
a. Cho các số a , b , c khác nhau đôi một và \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Tìm giá trị của biểu thức \(H=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
b. Tìm các cặp số nguyên ( x ; y ) sao cho : \(\left(9x+6xy\right)-2y=-8\)
c. Cho 6 số nguyên dương \(a< b< c< d< m< n\)
Chứng minh rằng : \(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)
Cho a,b,c>0 Chứng minh rằng M=\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\) không phải là số nguyên
Cho các số a,b,c,d thỏa mãn các điều kiện \(a^2+c^2=1;\dfrac{a^4}{b}+\dfrac{c^4}{d}=\dfrac{1}{b+d}\)
Chứng minh rằng: \(\dfrac{a^{2006}}{b^{1003}}+\dfrac{c^{2006}}{d^{1003}}=\dfrac{2}{\left(b+d\right)^{1003}}\)
a) Chứng minh rằng: \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
b) Tìm số nguyên a để: \(\dfrac{2a+9}{a+3}+\dfrac{5a+17}{a+3}-\dfrac{3a}{a+3}\) là số nguyên.
a) Cho 3 số a;b;c thỏa mãn \(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}\)
Tính giá trị của biểu thức B = 4(a-b)(b-c)-(c-a)2
b) Cho đa thức f(x) = a4x4+a3x3+a2x2+a1x+a0. Biết rằng f(1) =f(-1) và f(2)=f(-2). Chứng minh rằng f(x)=f(-x) với mọi x
c) Tìm các số nguyên dương x;y;z thỏa mãn \(\dfrac{x}{7}+\dfrac{y}{11}+\dfrac{z}{13}=\dfrac{946053}{999999}\)
Cho các số nguyên dương a;b;c thỏa mãn a+b+c=2016. Chứng minh rằng giá trị biểu thức sau không phải là một số nguyên:
A = \(\dfrac{a}{2016-c}+\dfrac{b}{2016-a}+\dfrac{c}{2016-b}\)
Tìm tỉ số của A và B , biết rằng :
A = \(\dfrac{1}{1.1981}+\dfrac{1}{2.1982}+.....+\dfrac{1}{n\left(1980+n\right)}.....+\dfrac{1}{25.2005}\)
B = \(\dfrac{1}{1.26}+\dfrac{1}{2.27}+......+\dfrac{1}{m\left(m+25\right)}+.......+\dfrac{1}{1980.2005}\)
Trogn đó A có 25 số hạng và B có 1980 số hạng
Cho các số thực a ; b ; c ; d ; e khác 0 thỏa mãn: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)
Chứng minh rằng: \(\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}=\dfrac{a}{e}\)