Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a) Tứ giác AMIN là hình gì? Vì sao?
b) Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi.
c) Đường thẳng BN cắt DC tại K. Chứng minh: \(\dfrac{DK}{DC}=\dfrac{1}{3}\)
Cho tam giác ABC vuông tại A(AB>AC) có đường trung tuyến AM.Gọi D là điểm đối xứng với điểm M qua đường thẳng AB,E là điểm đối xứng với điểm C qua điểm Aa)Chứng minh tứ giác AMBD là hình thoib)Chứng minh tứ giác AMDE là hình bình hành và 3 điểm B,D,E thẳng hàngc)Kẻ AH⊥BE tại H.Gọi F là trung điểm của AH.Chứng minh BF⊥CH
Cho tam giác ABC vuông tại A(AB>AC) có đường trung tuyến AM.Gọi D là điểm đối xứng với điểm M qua đường thẳng AB,E là điểm đối xứng với điểm C qua điểm Aa)Chứng minh tứ giác AMBD là hình thoib)Chứng minh tứ giác AMDE là hình bình hành và 3 điểm B,D,E thẳng hàngc)Kẻ AH⊥BE tại H.Gọi F là trung điểm của AH.Chứng minh BF⊥CH
Cho tam giác ABC vuông tại A(AB>AC) có đường trung tuyến AM.Gọi D là điểm đối xứng với điểm M qua đường thẳng AB,E là điểm đối xứng với điểm C qua điểm Aa)Chứng minh tứ giác AMBD là hình thoib)Chứng minh tứ giác AMDE là hình bình hành và 3 điểm B,D,E thẳng hàngc)Kẻ AH⊥BE tại H.Gọi F là trung điểm của AH.Chứng minh BF⊥CH
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau
tại H; O là giao điểm của 3 đường trung trực. Gọi I là điểm đối xứng với A qua O
a) Chứng minh: Tứ giác BHCI là hình bình hành. Tìm điều kiện của tam giác ABC để tứ giác BHCI là hình thoi
b) Tính tổng: \(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}\)
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau
tại H; O là giao điểm của 3 đường trung trực. Gọi I là điểm đối xứng với A qua O
a) Chứng minh: Tứ giác BHCI là hình bình hành. Tìm điều kiện của tam giác ABC để tứ giác BHCI là hình thoi
b) Tính tổng: \(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}\)
Cho tam giác ABC cân tại A , có đường ccao AH . Gọi M là trung điểm của AB , E là điểm đối xứng với H qua M
a ) Chứng minh tứ giác AHBE là hình chữ nhật
b Gọi N là trung điểm của AH . Chứng minh E , N , C thẳng hàng
c ) Cho AH = 8cm , BC =12 cm . Tính diện tích tam giác AMH
d ) Trên tia đối của tia HA lấy điểm F . Kẻ \(HK\perp FC\left(K\in FC\right)\). Gọi I , Q lần luwowtj là trung điểm của H K cà KC . CM : BK vuông góc với FI
Cho tam giác ABC cân tại A, đường cao AD. Gọi M là trung điểm của AB. E là điểm đối xứng với D qua M.
a) CM: tứ giác ADBE là hình chữ nhật
b) TỨ giác ACDE là hình gì? CHứng minh?
c) Lấy điểm K sao cho B là trung điểm của AK. CM: CK=2CM