cho \(-2\le a,b,c\le2\) và \(a+b+c=0\). chứng minh \(a^4+b^4+c^4\le32\)
Cho a, b, c là các số thực dương thoả mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le2\). Chứng minh rằng: \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{2}{3}\)
Cho a, b, c là các số thực dương thoả mãn \(a^2+b^2+c^2+abc=4\)
Chứng minh rằng: \(b+c\le2\sqrt{2-a}\)
cho \(a^3+b^3=2\) chứng minh \(0< a+b\le2\)
Cho 3 số a, b, c không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng: \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+a+b}+\dfrac{\sqrt{c}}{1+a+b+c}\le2\)
Cho a, b>0. Chứng minh rằng:
a) \(\dfrac{3a^2+2ab+3b^2}{a+b}\ge2\sqrt{2\left(a^2+b^2\right)}\)
b) \(\dfrac{2ab}{a+b}+\sqrt{\dfrac{a^2+b^2}{2}}\ge\sqrt{ab}+\dfrac{a+b}{2}\)
c) \(\dfrac{1}{\left(1+a\right)^2}+\dfrac{1}{\left(1+b\right)^2}\ge\dfrac{1}{1+ab}\)
Cho 3 số a, b, c thoả mãn \(0\le a,b,c\le2\)và a+b+c=3. Chứng minh rằng \(a^3+b^3+c^3\le9\)
cho a,b,c >0 thỏa \(a+b+c\le2\)
chứng minh \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\frac{\sqrt{97}}{2}\)
Cho 3 số a,b,c thỏa mãn \(-1\le a,b,c\le2\) và a+b+c=0
Chứng minh rằng \(ab+bc+ca\ge-3\)