Bài 1:a) Chứng minh rằng a3-13a chia hết cho 6 với a là số tự nhiên lớn hơn 1
b) Cho số abc chia hết cho 7 , chứng minh rằng 2a+3b+c chia hết cho 7
Cho a, b, c và d là các số nguyên tố thỏa mãn 5 < a < b < c < d < a + 10. Chứng minh rằng a + b + c + d chia hết cho 60.
chứng minh :\(3^8+3^6+3^{2010}-11\) chia hết cho 7
biết x,y,z là những số nguyên thỏa mãn \(\left(x^3+y^3+z^3\right)⋮27\).Chứng minh rằng cả ba số x,y,z cùng chia hết cho 3 hoặc hai trong 3 số đó có tổng chia hết cho 9
Với mỗi số nguyên dương \(n\), đặt \(s_{n} = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n\)
a) Chứng minh rằng: \(s_{n+2} = 4s_{n+1} - s_{n}\)
b) Chứng minh rằng sn là số nguyên với mọi số nguyên dương n và tìm số dư của s2018 khi chia cho 3.
c) Chứng minh rằng \([(2 + \sqrt{3})^n] = s_{n} - 1\) với mọi số nguyên dương \(n\), trong đó kí hiệu [x] là phần nguyên của số thực \(x\).
Chứng minh với mọi x thuộc N, x^2 + 1 không chia hết cho 3.
Ai giải giúp mình với, mình xin cảm ơn:
1. Tìm x,biết: \(\sqrt{4x}-3\sqrt{x}+2\sqrt{15x}=18\)
2. Rút gọn: B=\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{7-2\sqrt{10}}\)
3. Chứng minh rằng: \(8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}=\sqrt{2}\left(\sqrt{5}+1\right)\)
Cho 3 số thực dương a,b,c thỏa mãn ab+bc+ca=1
Chứng minh rằng: \(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{3}{2}.\)
(Chứng minh BĐT dựa vào BĐT Cauchy)
Bài 1: Cho x, y, z > 0 thỏa mãn xyz = 1. Chứng minh rằng: \(\dfrac{1}{x^3\left(y+z\right)}+\dfrac{1}{y^3\left(z+x\right)}+\dfrac{1}{z^3\left(x+y\right)}>=\dfrac{3}{2}\)
Bài 2: Cho a, b c > 0. Chứng minh rằng: \(\dfrac{a+3c}{a+b}+\dfrac{c+3a}{b+c}+\dfrac{4b}{c+a}>=6\)