Ta có : \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Leftrightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Leftrightarrow\left(x+y\right)^2=xy\)
Mặt khác, ta có : \(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy>xy\)
Do đó dấu "=" không xảy ra
=> Không tồn tại hai số x,y thỏa mãn giả thiết
Ta dùng phương pháp chứng minh phản chứng:
Giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức 1x+y =1x +1y
Suy ra 1x+y =y+xxy ⇔xy=(x+y).(x+y) ⇔(x+y)2=xy
Vì x + y trái dấu ⇒ (x + y)2 > 0 nên xy > 0 nhưng x và y là hai số trái dấu, không đối nhau nên xy < 0. Do đó đẳng thức trên không xảy ra.
Vậy không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đề bài.