Cho hàm số :
\(y=x^3-\left(m+4\right)x^2-4x+m\) (1)
a) Tìm các điểm mà đồ thị của hàm số (1) đi qua với mọi giá trị của m
b) Chứng minh rằng với mọi giá trị của m, đồ thị của hàm số (1) luôn luôn có cực trị
c) Khảo sát sự biến thiên và vẽ đồ thị (C) của (1) khi m = 0
d) Xác định k để (C) cắt đường thẳng \(y=kx\) tại 3 điểm phân biệt
Tìm m để hàm số :
a) \(y=x^4+\left(m^2-4\right)x^2+5\) có 3 cực trị
b) \(y=\left(m-1\right)x^4-mx^2+3\) có đúng một cực trị
Cho hàm số y = \(\dfrac{\left(4-m\right)\sqrt{6-x}+3}{\sqrt{6-x}+m}\) . Có bao nhiêu giá trị nguyên của m trong khoảng (-10; 10) sao cho hàm số đồng biến trên (-8; 5)
1.tìm m để hs y=\(\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
2. có bn số nguyên m để hs y=\(x^3+mx-\dfrac{1}{5x^2}\) đồng biến trên \(\left(0;+\infty\right)\)
3. có bn số nguyên m để hs y=\(\dfrac{mx-4}{x-m}\) tăng trên \(\left(0;+\infty\right)\)
Tìm m để hàm số :
\(y=\dfrac{1}{3}mx^3+mx^2+2\left(m-1\right)x-2\)
không có cực trị
Tìm m để hàm số :
a) \(y=x^3+\left(m+3\right)x^2+mx-2\) đạt cực tiểu tại \(x=1\)
b) \(y=-\dfrac{1}{3}\left(m^2+6m\right)x^3-2mx^2+3x+1\) đạt cực đại \(x=-1\)
Cho hàm số :
\(y=\dfrac{4-x}{2x+3m}\)
a) Xét tính đơn điệu của hàm số
b) Chứng minh rằng với mọi m, tiệm cận ngang của đồ thị \(\left(C_m\right)\) của hàm số đã cho luôn đi qua điểm \(B\left(-\dfrac{7}{4};-\dfrac{1}{2}\right)\)
c) Biện luận theo m số giao điểm của \(\left(C_m\right)\) và đường phân giác của góc phần tư thứ nhất
d) Vẽ đồ thị của hàm số
\(y=\left|\dfrac{4-x}{2x+3}\right|\)
1. có bn số nguyên m để y=\(\dfrac{mx+3}{3x+m}\) giảm trên \(\left(0;+\infty\right)\)
2. tìm m đẻ hs y=\(-x^3-6x^2+\left(4m-9\right)x+4\) giảm trên \(\left(-\infty;-1\right)\)
3. tìm m để y=\(x^3-mx^2+x+1\) tăng trên \(\left(0;+\infty\right)\)
Cho hàm số :
\(y=x^4+mx^2-m-5\)
a) Xác định m để đồ thị \(\left(C_m\right)\) của hàm số đã cho có ba điểm cực trị
b) Viết phương trình tiếp tuyến của \(\left(C_{-2}\right)\) (ứng với \(m=-2\)) song song với đường thẳng \(y=24x-1\)